- Historia de la electricidad
Las propiedades eléctricas o electroestáticas de ciertos materiales eran ya conocidas por las civilizaciones antiguas. Hacia el año 600 AC, el filósofo y científico Thales de Mileto había comprobado que, si se frotaba el ámbar, éste atraía hacia sí objetos más livianos. Se creía que la electricidad residía en el objeto frotado. De ahí que el término electricidad provenga del vocablo griego elecktron, que significa ámbar. En los dominios de la antigua Roma ya se explotaba un mineral que también poseía la propiedad de atraer a ciertos materiales (los metálicos), este mineral recibía el nombre de magnetita, mineral muy apreciado en la antigüedad precisamente por sus particulares características. Pero no fue hasta la época del Renacimiento cuando comenzaron los primeros estudios metodológicos, en los cuales la electricidad estuvo íntimamente relacionada con el magnetismo.

Thales de Mileto
Hacia el año 600 A.C., el filósofo griego Tales de Mileto observo que, frotando una varilla de ámbar con una piel o con lana, podía atraer cuerpos pequeños. También había observado que si la frotaba mucho tiempo podía causar el salto de una chispa
Antes del año 1800, el estudio de los fenómenos eléctricos y magnéticos sólo interesó a unos cuantos científicos, como W. Gilbert, C. A. de Coulomb, L. Galvani, Otto Von Guericke, Benjamín Franklin, o Alessandro Volta. Algunos otros hicieron importantes contribuciones al aún insuficiente y fragmentado conocimiento de la electricidad, pero en aquel tiempo no se conocían todavía sus aplicaciones y los estudios sólo fueron motivados por una simple curiosidad intelectual. La población iluminaba sus hogares con velas, lámparas alimentadas con aceite de ballena y petróleo, y la potencia motriz era suministrada generalmente por personas o animales de tracción.
El inglés William Gilbert comprobó que algunas sustancias se comportaban como el ámbar y cuando eran frotadas atraían objetos livianos, mientras que otras no ejercían ninguna atracción. A las primeras, entre las que ubicó al cristal, al azufre y la resina, las llamó eléctricas, mientras que, a las segundas, como el cobre o la plata, aneléctricas.

William Gilbert
Dio una explicación a la fuerza de atracción del ámbar y de la magnetita, confeccionando el primer electroscopio con el que comprobó que otras sustancias tienen las mismas propiedades que el ámbar
A principios del siglo XIX, el conde Alessandro Volta construyó una pila galvánica. Colocó capas de cinc, papel y cobre, y descubrió que, si se unía la base de cinc con la última capa de cobre, el resultado era una corriente eléctrica que fluía por el hilo de la unión. Este sencillo aparato fue el prototipo de las pilas eléctricas, de los acumuladores y de toda corriente eléctrica producida hasta la aparición de la dinamo

Alessandro Volta
Inventó la primera batería eléctrica del mundo. Su “pila voltaica” proveyó la primera fuente continua de corriente eléctrica que el mundo había visto
Mientras tanto, George Simon Ohm sentó las bases del estudio de la circulación de las cargas eléctricas en el interior de materias conductoras, postulando su ley, en la cual se relacionaba la resistencia con la intensidad y la tensión, es decir, tres de las cuatro magnitudes más importantes de la electricidad.

George Simon Ohm
Estudió la relación que existe entre la intensidad de una corriente eléctrica, su fuerza electromotriz y la resistencia, formulando en 1827 la ley que lleva su nombre
En 1819, Hans Cristian Orsted descubrió que una aguja magnética colgada de un hilo se apartaba de su posición inicial cuando pasaba próxima a ella una corriente eléctrica, y postuló que las corrientes eléctricas producían un efecto magnético. De esta simple observación salió la tecnología del telégrafo eléctrico. Sobre esta base, André Marie Ampère dedujo que las corrientes eléctricas debían comportarse del mismo modo que los imanes.

Hans Christian Orsted
Fue un físico y químico danés que descubrió el electromagnetismo, al observar que una corriente eléctrica desviaba una aguja imantada o brújula

André Marie Ampère
Formuló en 1827 la teoría de la electrodinámica, esencial al desarrollo del electromagnetismo, inventó el solenoide, e imaginó la primera teoría microscópica del magnetismo de materiales y una teoría del magnetismo terrestre.
El descubrimiento de Ampère llevó a Michael Faraday a suponer que una corriente que circulara cerca de un circuito induciría otra corriente en él. El resultado de su experimento fue que esto sólo sucedía al comenzar y cesar de fluir la corriente en el primer circuito. Sustituyó la corriente por un imán y encontró que su movimiento en la proximidad del circuito inducía en éste una corriente. De forma que pudo comprobar que el trabajo mecánico empleado en mover un imán podía transformarse en corriente eléctrica

Michael Faraday
Fue un científico británico que estudió el electromagnetismo y la electroquímica. Sus principales descubrimientos incluyen la inducción electromagnética, el diamagnetismo y la electrólisis
Durante este mismo periodo ocurrieron impresionantes avances en la comprensión de los fenómenos eléctricos y magnéticos. Humphrey Davy, André Marie Ampere, G.S. Ohm y Karl Gauss realizaron importantes descubrimientos, pero el descubrimiento que llegó a ser fundamental para elevar el concepto de la electricidad como un fenómeno científico interesante a una gran tecnología con implicaciones sociales de grandes alcances se logró de forma independiente por los investigadores Michael Faraday y Joseph Henry. Ampère y otros ya habían observado que los campos magnéticos eran generados por corrientes eléctricas; sin embargo, ninguno había descubierto cómo se podían obtener corrientes eléctricas a partir de campos magnéticos. Faraday trabajó en ello de 1821 a 1831, logrando el éxito al formular la ley que lleva su nombre. Posteriormente construyó una máquina generadora de voltaje según los principios de inducción magnética. Se tenía ahora una fuente de electricidad que rivalizaba (y excedía en mucho) las posibilidades de la pila voltaica y las botellas de Leyden James Prescott Joule, descubrió a qué eran debidas las pérdidas de energía. Mediante la ley de Joule, enunciada en 1841, según la cual la cantidad de calor desprendido por un conductor al paso de una corriente eléctrica es directamente proporcional al cuadrado de la intensidad de la corriente, a la resistencia de dicho conductor y al tiempo durante el cual circula dicha corriente, según la expresión: Q= kI2Rt, donde k es una constante de proporcionalidad que depende del sistema de unidades utilizado

James Prescott Joule
Publicó Producción de calor por la electricidad voltaica, en la que estableció la ley que lleva su nombre y que afirma que el calor originado en un conductor por el paso de la corriente eléctrica es proporcional al producto de la resistencia del conductor por el cuadrado de la intensidad de corriente
Varios investigadores, incluyendo Carl Siemens, Wheatstone, Varley, Gramme, aplicaron los principios de inducción en la construcción de primitivos generadores eléctricos en el periodo comprendido entre 1840 a 1870. Casi al mismo tiempo, un fenómeno descubierto algunos años atrás, atrajo especial atención como una práctica fuente luminosa. Se observó que cuando dos electrodos conducían corriente se mantenían separados, se formaba entre ellos un arco eléctrico de intenso brillo
Los experimentos de Faraday fueron expresados matemáticamente por James Maxwell, quien en 1873 presentó sus ecuaciones, que unificaban la descripción de los comportamientos eléctricos y magnéticos y su desplazamiento a través del espacio en forma de ondas

James Maxwell
Formuló la teoría clásica del electromagnetismo deduciendo así que la luz está hecha de campos eléctricos y magnéticos que se propagan por el espacio, teoría que llevó a la predicción de la existencia de las ondas de radio y a las radiocomunicaciones
En 1878 Thomas Alva Edison comenzó los experimentos que terminarían, un año más tarde, con la invención de la lámpara eléctrica, que universalizaría el uso de la electricidad. Desde que en 1880 entró en funcionamiento en Londres la primera central eléctrica destinada a iluminar la ciudad, las aplicaciones de esta forma de energía se extendieron progresivamente. En Buenos Aires, el sistema eléctrico comenzó con la aparición de la Compañía General Eléctrica Ciudad de Buenos Aires, en 1887. En 1882 se instaló el primer sistema para la venta de energía eléctrica para el alumbrado incandescente en EE.UU. El sistema era de corriente continua (DC), de tres cables 220/110 V, y alimentó una carga de lámparas de Edison que tenían un requerimiento total de 30 KW de potencia. Este y otros sistemas avanzados fueron el principio de lo que se convertiría en una de las industrias más grandes del mundo

Thomas Alva Edison
¿Sabías que, a lo largo de toda su vida, Thomas Alva Edison llegó a patentar un total de 1093 inventos? La historia de este científico, empresario e inventor estadounidense es un relato plagado de ingenio, perseverancia y, cómo no, una creatividad desenfrenada, que cambió el mundo de una manera sin precedentes
Entre 1800 y 1810 se fundaron compañías comerciales de alumbrado con gas, primero en Europa y poco después en Estados unidos. Hubo oposición al alumbrado de gas por su potencia explosiva. Sin embargo, la ventaja básica de más luz a menor precio no podía seguir ocultándose, por lo que se acabó desarrollando la industria durante el siglo XIX, teniendo su punto culminante alrededor de 1885.
Las antiguas compañías eléctricas se autonombraban compañías de iluminación, ya que el alumbrado constituía su único servicio. Sin embargo, muy pronto se encontró un problema técnico que aún prevalece: la carga que la compañía tenía que satisfacer comenzaba al anochecer, se mantenía casi constante en las primeras horas de la noche, y después caía de forma precipitada a las 11 p.m., aproximadamente, a un 50% o menos. Era evidente que se tenía un complicado sistema, que permanecía ocioso o al menos infrautilizado la mayor parte del tiempo. En este caso, ¿se podrían encontrar otras aplicaciones que ocuparan las etapas de inactividad? Ya se conocía el motor eléctrico, y la existencia de un substituto eléctrico era un incentivo para su mejoramiento y aceptación comercial. El uso de potencia eléctrica motora llegó a ser popular con rapidez y se le dieron muchas aplicaciones. Debido a sus funciones cada vez más extensas, las compañías comenzaron a nombrarse compañías de luz y fuerza.
Surgió otro problema técnico: los incrementos de carga se tradujeron en incremento de corriente, lo que causó caídas de tensión que eran inaceptables si las plantas generadoras estaban ubicadas a grandes distancias de las cargas. El hecho de mantener los generadores cerca de las cargas llegó a ser cada vez más difícil, ya que los lugares adecuados para la generación frecuentemente no estaban disponibles. Se sabía que la potencia eléctrica era proporcional al producto del voltaje y la corriente. Es decir, se obtendría menor corriente a mayor voltaje. Desgraciadamente, no era deseable un voltaje más alto desde cualquiera de los dos puntos de vista. El tecnológico y la seguridad del cliente. Lo que se requería era transmitir la potencia a un voltaje más alto a través de grandes distancias, y después cambiarlo a valores menores en los sitios de carga. La clave era diseñar un dispositivo que pudiese transformar niveles de corriente y voltaje de forma fiable y eficiente. En la década de 1890, la compañía Westinghouse, recién constituida, experimentó una nueva forma de electricidad, denominada corriente alterna (AC), inspirada en el hecho de que la corriente invierte alternativamente el sentido del flujo en sincronismo con el generador rotatorio. Esta novedad tenía muchas ventajas inherentes; por ejemplo, se eliminaron los problemas de conmutación, propios de los generadores de DC, lo que dio lugar a controversias entre Edison, de la nueva compañía General Electric, y la Westinghouse, para definir si la industria debía establecer normas sobre AC o DC

Finalmente triunfó la corriente alterna, por las siguientes razones:
- El transformador de AC podía satisfacer el requerimiento necesario de cambiar fácilmente los niveles de voltaje y corriente.
- El generador de AC era más sencillo.
- Los motores de AC, sin ser versátiles, eran más sencillos y más baratos.
Una vez que se estandarizó la AC, apareció prácticamente el concepto de estación central y desaparecieron los problemas de las cargas lejanas. Este tipo de compañías tuvieron cada vez mayor número de clientes, ya que la mayor parte del incremento de carga se podía manejar sin que hubiera necesidad de incrementar la inversión del capital; se abarató el costo por unidad de energía, lo que atrajo aún más clientes. Las empresas eléctricas locales se extendieron en tal forma que compartieron sus límites. Esta ventaja operativa fue aparente; como las cargas en sistemas adyacentes no necesariamente alcanzaban su máximo al mismo tiempo, ¿por qué no interconectar los sistemas y satisfacer las condiciones de carga pico con la generación de potencia combinada? Ya se conocían estas ventajas de interconectar diferentes lugares generadores y cargas; por tanto, este paso sería una extensión lógica del principio y una mejor utilización del equipo correspondiente. Inmediatamente surgió un problema técnico; en aquel tiempo, estaban en uso muchas frecuencias diferentes incluyendo DC, y AC de 25, 50, 60 125 y 133 Hz (en 1900). Como los sistemas interconectados debían operar a la misma frecuencia, se requerían equipos de conversión de frecuencia de alto coste. Fue evidente el incentivo para estandarizar las frecuencias. En aquel tiempo, las unidades generadoras de las cataratas del Niágara y otras instalaciones hidroeléctricas usaban 25 Hz, ya que las hidroturbinas se podían diseñar para operar con mayor rendimiento a estas velocidades mecánicas; este fue un fuerte apoyo para usar esa frecuencia. El problema con 25 Hz radicaba en el hecho de que producía un parpadeo perceptible en las lámparas incandescentes. Eventualmente se adoptó una frecuencia mayor, de 60 Hz, como norma en Estados Unidos, ya que poseía características eléctricas aceptables y porque las turbinas de vapor trabajaban satisfactoriamente a las correspondientes velocidades mecánicas de 3600 y 1800 rev / min

El progreso tecnológico en el diseño de aparatos de potencia continuó: cuando una empresa extendía sus sistemas, los nuevos generadores y transformadores comprados eran invariablemente de mayor capacidad y rendimiento. Se desarrollaron mejores lámparas eléctricas, proporcionando al cliente más luz por unidad de energía. Con la constante baja en el coste de la energía, la selección de motores eléctricos como propulsores mecánicos llegó a ser muy popular para toda clase de aplicaciones
Por todo lo expuesto, la electricidad constituye, hoy por hoy, una de las manifestaciones energéticas más difundidas, tanto por su facilidad de generación, transporte y consumo como por sus numerosas aplicaciones y conversión en otras formas de energía (mecánica y térmica, principalmente).
No obstante, no está todo solucionado en el campo eléctrico. Actualmente el gran problema que se plantea es la imposibilidad de almacenar energía eléctrica en su forma alterna no existiendo métodos realmente eficaces para conseguirlo de forma definitiva y en grandes cantidades.
Un sistema eléctrico, es un sistema capaz de generar, transportar y consumir energía eléctrica. Por ejemplo, una linterna, con su batería (generador), sus hilos (transporte), y su bombilla (carga), constituye un ejemplo sencillo de sistema eléctrico.
Un sistema eléctrico de potencia es un sistema con generación, transporte y consumo de energía eléctrica, pero en grandes cantidades (millones de vatios), a grandes distancias (cientos de km), y con grandes consumos (millones de vatios). Actualmente los grandes sistemas eléctricos son las redes de interconexión más importantes que se conocen, ya que llegan prácticamente a todos los confines del mundo.
1.2 Cronología histórica de la electricidad
A continuación, se exponen algunas fechas y nombres relevantes que han contribuido al desarrollo y evolución de la electricidad a lo largo de la historia.
- 600 AC: Tales de Mileto (624-548 AC) descubre que, si se frota el ámbar, éste atrae a los objetos más livianos.
- 1800: Alessandro Volta (1745-1827) descubre la pila eléctrica.
- 1819: Hans Oersted (1777-1851) descubre el efecto magnético de la corriente eléctrica, probando que la electricidad puede producir magnetismo.
- 1821: Michael Faraday (1791-1867) describe el principio de la dinamo.
- 1827: André Marie Ampère (1775-1836) descubre las leyes que relacionan la fuerza magnética con la corriente eléctrica.
- 1827: George Ohm (1789-1854) establece la ley de la resistencia eléctrica.
- 1831: Michael Faraday descubre la inducción electromagnética, confirmando así que el magnetismo puede producir electricidad.
- 1879: Thomas Alva Edison inventa la lámpara eléctrica.
- 1880: En Londres comienza a funcionar la primera central eléctrica destinada a iluminar una ciudad.
- 1887: Se inicia el sistema de iluminación eléctrico en la ciudad de Buenos Aires.
- 1908: Heike Kammerlingh Onnes (1853-1926) descubre el principio de la superconducción.
(podés descargar el PDF acá)